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A Highly Biased View of the ‘ART’ of Data Assimilation
Jeffrey L. Anderson

20 March, 2002

I. Overview and some methods
Big problems require clever simplification

II. Challenges
A. Model bias
B. Balances and attractors
C. Assimilation and discrete distributions

III. Opportunities
Field is maturing; theory and methods that are easy to app
Software engineering advances make it easier to get starte
Efforts like Data Assimilation Research Testbed (DART)

underway

A. A plethora of untouched models and observations
B. Improved assimilation methods for existing problems
C. Improved use of existing observations; quality control
D. Using data to improve models
E. Evaluating value of existing observations
F. Evaluating future observing systems
H. Adaptive observations
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The Data Assimilation Problem

Given:
________________________________________________

1. A physical system (atmosphere, ocean...)
________________________________________________

2. Observations of the physical system

Usually sparse and irregular in time and space
Instruments have error of which we have a (poor) estimate
Observations may be of ‘non-state’ quantities
Many observations may have very low information content

________________________________________________

3. A model of the physical system

Usually thought of as approximating time evolution
Could also be just a model of balance (attractor) relations
Truncated representation of ‘continuous’ physical system
Often quasi-regular discretization in space and/or time
Generally characterized by ‘large’ systematic errors
May be ergodic with some sort of ‘attractor’

________________________________________________
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The Data Assimilation Problem (cont.)

We want to increase our information about all three pieces:

________________________________________________

1. Get an improved estimate of state of physical system

Includes time evolution and ‘balances’
Initial conditions for forecasts
High quality analyses (re-analyses)

________________________________________________

2. Get better estimates of observing system error characteris

Estimate value of existing observations
Design observing systems that provide increased informat

________________________________________________

3. Improve model of physical system

Evaluate model systematic errors
Select appropriate values for model parameters
Evaluate relative characteristics of different models

________________________________________________
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Examples:

A. Numerical Weather Prediction
Model: Global troposphere / stratosphere O(1 degree by 50 levels)
Observations: radiosondes twice daily, surface observations, satellit

winds, aircraft reports, etc.

B. Tropical Upper Ocean State Estimation (ENSO prediction)
Model: Global (or Pacific Basin) Ocean O(1 degree by 50 levels)
Observations: Surface winds (possibly from atmospheric assimilatio

TAO buoys, XBTs, satellite sea surface altimetry

C. Mesoscale simulation and prediction
Model: Regional mesoscale model (WRF), O(1km resolution)
Observations: Radial velocity from Doppler radar returns

D. Global Carbon Sources and Sinks
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Nonlinear Filtering

Dynamical system governed by (stochastic) DE

(1)

Observations at discrete times

(2)

Observational error is white in time and Gaussian

(3)

Complete history of observations is

(4)

Goal: Find probability distribution for state at time t

(5)

dxt f xt t,( )= G xt t,( )dβt+ t 0≥,

yk h xk tk,( )= vk k;+ 1 2 … tk 1+ tk t0≥>;, ,=

vk N 0 Rk,( )→

Yτ yl tl τ≤;{ }=

p x t Yt,( )
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Nonlinear Filtering (cont.)

State between observation times obtained from DE

Need to update state given new observation

(6)

Apply Bayes’ rule

(7)

Noise is white in time (3) so

(8)

Also have

(9)

p x tk Ytk
, 

  p x tk yk Ytk 1–
,, 

 =

p x tk Ytk
, 

 
p yk xk Ytk 1–

, 
  p x tk Ytk 1–

, 
 

p yk Ytk 1– 
 

------------------------------------------------------------------------------------=

p yk xk Ytk 1–
, 

  p yk xk( )=
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Nonlinear Filtering (cont.)

Probability after new observation

(10)

Second term in numerator, denominator comes from DE
First term comes from distribution of observational error

p x tk Ytk
, 

 
p yk x( ) p x tk Ytk 1–

, 
 

p yk ξ( ) p ξ tk Ytk 1–
, 

  ξd∫
-------------------------------------------------------------------=
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General methods for solving the filter equations are known:

1. Advancing state estimate in time

2. Taking product of two distributions

But, these methods arefar too expensive for problems of interest

1. Huge model state spaces (10 is big!), NWP models at O(10 millio

2. Need truncated representations of probabilistic state to avoid exp
tial solution time and storage

The ART of Data Assimilation:

Find heuristic simplifications that make approximate solution afforda

1. Localization (spatial or other truncated basis)

2. Linearization of models, represent time evolution as linear (around
control non-linear trajectory)

3. Represent distributions as Gaussian (or sum of Gaussians)

4. Monte Carlo methods

5. Application of simple balance relations
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Kalman Filter

Simplifications:

1. Linearization of model around non-linear control trajectory

2. Error distributions assumed Gaussian

Fundamental Problem:

Still too expensive for large models

Advancing covariance in linearized model is at least
O(model_size * model_size)
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Kalman
Filter

time 1
time 2

Assimilation
(Gaussian)

Advance Mean
with Model;
Advance
covariance with
linearized model.

Observations
(Gaussian)

Prior
(Gaussian)

Assimilation
(Gaussian)
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Reduced Space Kalman Filters:

Additional simplification:

Assume that covariance projects only on small subspace of
model state

Evolving covariance in linearized model projected on subspa
may be cheap

Subspace selection:

1. Dynamical: use simplified model based on some sort of
scaling

2. Statistical: use long record of model (or physical system) t
find reduced basis in which most variance occurs (EOF mo
common to date)

Problems:

1. Dynamics constrained to subspace may provide inaccurat
covariance evolution

2. Observations may not ‘project strongly’ on subspace

3. Errors orthogonal to subspace unconstrained, model bias 
these directions can quickly prove fatal
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Ensemble Kalman Filters:

Simplifications:

1. Monte Carlo approximation to probability distributions

2. Localization in space, avoids degeneracy from samples
smaller that state space

3. Gaussian representation of probability distributions genera
used for computing update

Problems:

1. Selecting initial samples for ensembles (Monte Carlo samp

2. Determining degree of spatial localization

3. Maintaining appropriate model ‘balances’ in ensemble
members

BUT, UNPRECEDENTED EASE OF INITIAL APPLICATION
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How an Ensemble Filter Works

Theory: Impact of observations can be handled sequentially
Impact of observation on each state variable can be hand
sequentially

B. Observed value
and observational error
distribution from observing

H

H

H

D. (Step 1) Find
increments for
prior estimate of
observation.

E. (Step 2) Use linear
regression to compute
corresponding increments
for each state variable.

A. Integrate model
ensemble to time
at which observation
becomes available.

system.

C. Get prior ensemble
sample of observation
by applying H to each
member of ensemble.
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Details of Step 1: Updating Observation Variable Ensemble

Scalar Problem: Wide variety of options available and afforda

Begin with two previously documented methods:

1. Perturbed Observation Ensemble Kalman Filter

2. Ensemble Adjustment Kalman Filter
__________________________________________

Both make use of following (key to Kalman filter...)

Given prior ensemble with sample meanzp and covarianceΣp

Observation yo with observational error variance matrix R

Note: Product of Gaussians is Gaussian

(9)

and mean:

(10)

Σu Σp
 
  1–

H
T

R 1– H+
 
 
  1–

=

z
u Σu Σp

 
  1–

z
p

HTR 1– y
o+

 
 
 =
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Details of Step 1: Perturbed Obs. Ensemble Kalman Filter

1. Compute prior sample variance and mean,Σp andzp

2. Apply (9) once to compute updated covariance,Σu

3. Create an N-member random sample of observation

distribution by adding samples of obs. error to yo

4. Apply (10) N times to compute updated ensemble membe

Replacezp with value from prior ensemble, yp
i

Replace yo with value from random sample, yo
i

Updated ensemble value is yu
i (= zu from 10)

NOTE: When combined with linear regression for step 2, this
gives identical results to EnKF’s described in literature!

* * * **

*** * *

* * ** *

Observation

Prior

Updated (Posterior)

(4th prior sample
paired with 3rd
obs. sample for
product)

yo
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Two Step Ensemble Assimilation (cont.)

Step 2: Given increments for y, find increments for state variab

More challenging when obs and state are not functionally rel

Example: y = h(x2), x and x2 strongly correlated

Large sample size needed to ‘remove’ noise
Trade-offs with local linearization (dotted magenta)

*
*

* *

**

++++++

+
+

++

++

+

y

x

Observation

∆y5

∆y1

∆x1 ∆x5

*  is prior ensemble sample

y=h(x2)

Least Squares Fit
(Regression of
x on y)
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Technical Difficulties Remain

Problem 1.Sampling error impacts estimates of increments

Key: estimates of correlations for regression have errors

Many obs. with small expected correlations => error build-up

Solution: Reduce impact of observations as function of ensem
size, sample correlation, and prior knowledge of expecte
distribution of correlation

But...need this prior estimate (may be mostly unknown?)

For now, use distance dependent envelope to reduce impact
remote observations

Even picking this envelope still tricky for now

Distance0

1
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Problem 2.Initial conditions for ensembles

Key: Bayesian, assumes initial ensembles are magically avail

Solution: For ergodic models (many global GCMs) spin-up b
running ensemble a very long time from arbitrary initial
perturbations, slowly ‘turn on’ observations

But... this may be impossible for WRF regional applications

Given prior knowledge of expected correlations (see problem
should be able to generate appropriate ensemble ICs

Still a topic for ongoing research
________________________________________________
Problem 3.Assimilation of variableswith discrete distributions

Key: ensemble prior may indicate zero probability of an even
that is occurring

I.E. All ensemble members say no rain but rain is observed

Directly related to existence of discrete convective cells

Solutions: Apply methods for accounting for model error

Redefine state variables to avoid discrete probability densitie

Research on this problem is in its infancy
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4D-Variational (4D-Var)

Find model trajectory through time that minimizes a norm measuring departur
from observations

Applied over some finite period of observations

For optimization, need gradient of norm with respect to model state at initial tim

Key: integrating the adjoint of the linear tangent model linearized around forwa
non-linear model trajectory backward in time allows computation of gradien
with single integration pair

This makes 4D-Var feasible as long as period is short and number of iteration
needed for optimization is small

Additional problems:
1. Model ‘balance’ constraints may not be satisfied for finite optimization perio
2. Still hard to generate adjoints for complicated models
3. May need to relax constraints to deal with modelBIAS

* *
*

* *
*

Initial guess for x0

Modified x0 with
improved fit to
observations

time
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Challenge #1: Model Bias and Atmospheric Balances

Filter equations assume prior estimate (and observations) are unbiased
Questionable for Observations, ridiculous for Models

Biased prior estimate will cause observations to be given too little weight

Repeated applications lead to progressively less weight, estimate can diverge

Implications are obvious for 4D-Var, too

Dealing with model bias is mostly an open question:

1. Can reduce confidence in model prior estimates by some constant factor

2. Explicitly model the model bias as an extended state vector and assimilate c
cients of this bias model

Model: dx/dt = F(x)

Model plus bias model: dx/dt = F(x) +ε(t); dε/dt = 0
whereε is a vector of the same length as x

Very tricky: if we knew much about modeling the bias, we could remove

PRIOR

OBSERVATION

* * *
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Challenge #2: Balances and Attractors

Many models of interest have balances, both obvious (say geostrophic) and s

The structure of the model ‘attractors’ may be extremely complex

In some cases, off-attractor perturbations may lead to ‘large’ transient respons

Example: High frequency gravity waves in some Primitive Equation models

The behavior of these transients can lead to model bias

In this sense, even perfect model experiments can have large model bias

Understanding how to minimize this behavior or limit its impact is a fun proble

The continuous system may also have balances, obvious and subtle

Unclear how differences between model and continuous ‘attractors’ impacts
assimilation
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Lorenz 9-Variable Model

Time series of Ensemble Filter Assimilation for variable X1

(1)

(2)

(3)

(4)

(5)

(6)

(7)

Defined for cyclic permutations of the indices (i, j, k) over the values (1, 2, 3).
X, Y and z variables can be thought of as representing divergence, vorticity and height

6.72 6.725 6.73 6.735 6.74 6.745 6.75 6.755 6.76 6.765 6.77

x 10
4

−0.0115

−0.0114

−0.0113

−0.0112

−0.0111

−0.011

−0.0109

−0.0108

−0.0107

TIME

/local/home/assim/pe/9var0

10 of 20 Ensembles

Ensemble Mean

Truth

Observations Every 10 Steps
with specified error distribution

Ẋi U jUk V jVk v0ai Xi Yi aizi+ +–+=

Yi
˙ U jYk YjVk Xi v0aiYi––+=

żi U j zk hk–( ) zj hj–( )Vk g0Xi K0aizi Fi+––+=

Ui bj xi cyi+–=

Vi bkxi– cyi–=

Xi ai xi–=

Yi ai yi–=
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Challenge #3: Assimilation of Discrete Distributions

Example: assimilation of convective elements

Prior is ‘certain’ that there are no convective cells outside the red are
Observations indicate discrete areas outside the red
This is indicative of highly non-linear problem
Ensemble techniques, at best, tend to smear out prior discrete struc
4D-Var is likely to have non-global local minima

But, we think we know what we want to do
Keep information from prior on larger scale ‘background’
Introduce cells where observed

Requires new norms or ways to deal with model bias as function of 

Prior Ensemble

Observations

Updated
Ensemble
Mean
/home/jla/dart/asp_seminar/slides1.fm March 18, 2002



)
d data

!

tions

 bad
Exciting Opportunities Abound in Data Assimilation

Field is maturing, basic theory well-understood
Increasingly powerful heuristic methods being developed
Some new methods (like filter) are very simple to implement (naively
Software engineering advances make it easier to access models an
NCAR/NOAA are building a prototype facility for exploring DA

1. The challenges are opportunities!

2. Plethora of models and observations that have not been touched!

3. Improved assimilation application to existing high profile problems

Example: Getting more from existing data, surface pressure observa

Example: Quality control of observations: using good data, rejecting

4. Using data to improve models!

Example: Application in simple low-order model

5. Stochastic (ensemble) prediction

6. Evaluating and designing observing systems! (Observing / Assimila-
tion System Simulation Experiments)

What is information content of existing observations?

What is value of additional proposed observations?

Use of targeted (on demand) observations
Potential for extremely high impact (if you can stand the heat)
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Quality Control of Observations

Methods to exclude erroneous observations

1. Discard impossible values (negative R.H.)

2. Discard values greatly outside climatological range

3. Discard values that are more thanα prior ensemble sample
standard deviations away from prior ensemble mean

4. ‘Buddy’ checks for pairs of observations: just apply chi-squa
test using prior ensemble covariance and label pair as incon
tent if threshold value exceeded

5. Could also apply chi-square to larger groups of obs.

y1

y2

*

*
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Lorenz-96 Model

Variable size low-order dynamical system

N variables, X1, X2, ..., XN

dXi / dt = (Xi+1 - Xi-2)Xi-1 - Xi + F

            i = 1, ..., N with cyclic indices

Use N = 40, F = 8.0, 4th-order Runge-Kutta with dt=0.05
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TIME

X(
1)
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Lorenz-96Free Forcing Model Filter

20 Member Ensemble (10 Plotted) Obs Every 2 Steps

Truth (8.0) Ensemble

200 210 220 230 240 250 260 270 280 290 300
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>> Can treat model parameters
as free parameters <<

>> Here, the forcing F is assimi
lated along with the state <<

>> This is potential mechanism
for dynamic adjustment of
unknown parameters and for
dealing with unknown model
systematic error <<
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Global Dry PE Model Assimilation (40 lons x 30 lats x 5 levels)

Mid-latitude / Mid-troposphere Temperature Days 100-200
No assimilation after day 100

10 Members of 20 Member Ensemble Ensemble Mean Truth

RMS Error of Ensemble Mean Ensemble Spread
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Ensemble Spread    

Ensemble Mean Error
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Correlation coefficient 0.27

TIME (6 hour time steps, days 100−200)
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Global Dry PE Model Assimilation (40 lons x 30 lats x 5 levels)

Mid-latitude / Mid-troposphere Temperature Days 100-200
Assimilating ONLY Surface Pressure (Obs. Error S.D. 100 Pa) Every 6 Hours

10 Members of 20 Member Ensemble Ensemble Mean TruthRMS

Error of Ensemble Mean Ensemble Spread
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